Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(4): 92, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466441

RESUMO

KEY MESSAGE: Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.


Assuntos
Capsicum , Óxido Nítrico , Óxido Nítrico/metabolismo , Frutas/metabolismo , Capsicum/genética , Capsicum/metabolismo , Leucina/metabolismo , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/metabolismo , Ácido Peroxinitroso/metabolismo , Cianetos/metabolismo , Dipeptídeos/metabolismo
2.
Plants (Basel) ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836149

RESUMO

Pepper (Capsicum annuum L.) fruit is a horticultural product consumed worldwide which has great nutritional and economic relevance. Besides the phenotypical changes that pepper fruit undergo during ripening, there are many associated modifications at transcriptomic, proteomic, biochemical, and metabolic levels. Nitric oxide (NO) is a recognized signal molecule that can exert regulatory functions in diverse plant processes including fruit ripening, but the relevance of NADPH as a fingerprinting of the crop physiology including ripening has also been proposed. Glucose-6-phosphate dehydrogenase (G6PDH) is the first and rate-limiting enzyme of the oxidative phase of the pentose phosphate pathway (oxiPPP) with the capacity to generate NADPH. Thus far, the available information on G6PDH and other NADPH-generating enzymatic systems in pepper plants, and their expression during the ripening of sweet pepper fruit, is very scarce. Therefore, an analysis at the transcriptomic, molecular and functional levels of the G6PDH system has been accomplished in this work for the first time. Based on a data-mining approach to the pepper genome and fruit transcriptome (RNA-seq), four G6PDH genes were identified in pepper plants and designated CaG6PDH1 to CaG6PDH4, with all of them also being expressed in fruits. While CaG6PDH1 encodes a cytosolic isozyme, the other genes code for plastid isozymes. The time-course expression analysis of these CaG6PDH genes during different fruit ripening stages, including green immature (G), breaking point (BP), and red ripe (R), showed that they were differentially modulated. Thus, while CaG6PDH2 and CaG6PDH4 were upregulated at ripening, CaG6PDH1 was downregulated, and CaG6PDH3 was slightly affected. Exogenous treatment of fruits with NO gas triggered the downregulation of CaG6PDH2, whereas the other genes were positively regulated. In-gel analysis using non-denaturing PAGE of a 50-75% ammonium-sulfate-enriched protein fraction from pepper fruits allowed for identifying two isozymes designated CaG6PDH I and CaG6PDH II, according to their electrophoretic mobility. In order to test the potential modulation of such pepper G6PDH isozymes, in vitro analyses of green pepper fruit samples in the presence of different compounds including NO donors (S-nitrosoglutathione and nitrosocysteine), peroxynitrite (ONOO-), a hydrogen sulfide (H2S) donor (NaHS, sodium hydrosulfide), and reducing agents such as reduced glutathione (GSH) and L-cysteine (L-Cys) were assayed. While peroxynitrite and the reducing compounds provoked a partial inhibition of one or both isoenzymes, NaHS exerted 100% inhibition of the two CaG6PDHs. Taken together these data provide the first data on the modulation of CaG6PDHs at gene and activity levels which occur in pepper fruit during ripening and after NO post-harvest treatment. As a consequence, this phenomenon may influence the NADPH availability for the redox homeostasis of the fruit and balance its active nitro-oxidative metabolism throughout the ripening process.

3.
Antioxid Redox Signal ; 39(1-3): 2-18, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36950799

RESUMO

Aims: Pepper fruit is a horticultural product worldwide consumed that has great nutritional and economic relevance. Besides the phenotypical changes that undergo pepper fruit during ripening, there are many associated modifications at transcriptomic, proteomic, biochemical, and metabolic levels. Nitric oxide (NO) and hydrogen sulfide (H2S) are recognized signal molecules that can exert regulatory functions in diverse plant processes. This study aims at analyzing the interrelationship between NO and H2S during fruit ripening. Results: Our data indicate that the H2S-generating cytosolic L-cysteine desulfhydrase (LCD) and the mitochondrial D-cysteine desulfhydrase (DCD) activities are downregulated during ripening but this effect was reverted after NO treatment of fruits. Innovation and Conclusion: Using as a model the non-climacteric pepper fruits at different ripening stages and under an NO-enriched atmosphere, the activity of the H2S-generating LCD and DCD was analyzed. LCD and DCD activities were downregulated during ripening, but this effect was reverted after NO treatment of fruits. The analysis of LCD activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) allowed identifying three isozymes designated CaLCD I to CaLCD III, which were differentially modulated by NO and strictly dependent on pyridoxal 5'-phosphate (PLP). In vitro analyses of green fruit samples in the presence of different compounds including NO donors, peroxynitrite (ONOO-), and reducing agents such as reduced glutathione (GSH) and L-cysteine (L-Cys) triggered an almost 100% inhibition of CaLCD II and CaLCD III. This redox adaptation process of both enzymes could be cataloged as a hormesis phenomenon. The protein tyrosine (Tyr) nitration (an NO-promoted post-translational modification) of the recombinant LCD was corroborated by immunoblot and by mass spectrometry (MS) analyses. Among the 11 Tyr residues present in this enzyme, MS of the recombinant LCD enabled us to identify that Tyr82 and Tyr254 were nitrated by ONOO-, this occurring near the active center on the enzyme, where His237 and Lys260 together with the cofactor PLP are involved. These data support the relationship between NO and H2S during pepper fruit ripening, since LCD and DCD are regulated by NO during this physiological event, and this could also be extrapolated to other plant species.


Assuntos
Capsicum , Sulfeto de Hidrogênio , Óxido Nítrico/metabolismo , Frutas , Capsicum/metabolismo , Cistationina gama-Liase/metabolismo , Proteômica , Sulfeto de Hidrogênio/metabolismo
4.
Methods Mol Biol ; 2642: 233-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944882

RESUMO

Hydrogen sulfide (H2S) is a signaling molecule that achieves different regulatory functions in animal and plant cells. The cytosolic enzyme L-cysteine desulfhydrase (LCD; EC 4.4.1.28) catalyzes the conversion of cysteine (L-Cys) to pyruvate and ammonium with the concomitant generation of H2S, this enzyme being considered one of the main sources of H2S in higher plants. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with a specific assay for LCD activity, the present protocol allows identifying diverse LCD isozymes present in different organs (roots, shoots, leaves, and fruits) and plant species including pea, garlic, Arabidopsis, and pepper.


Assuntos
Arabidopsis , Sulfeto de Hidrogênio , Cistationina gama-Liase , Cisteína , Isoenzimas , Eletroforese em Gel de Poliacrilamida Nativa , Plantas
5.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499530

RESUMO

Lipoxygenases (LOXs) catalyze the insertion of molecular oxygen into polyunsaturated fatty acids (PUFA) such as linoleic and linolenic acids, being the first step in the biosynthesis of a large group of biologically active fatty acid (FA)-derived metabolites collectively named oxylipins. LOXs are involved in multiple functions such as the biosynthesis of jasmonic acid (JA) and volatile molecules related to the aroma and flavor production of plant tissues, among others. Using sweet pepper (Capsicum annuum L.) plants as a model, LOX activity was assayed by non-denaturing polyacrylamide gel electrophoresis (PAGE) and specific in-gel activity staining. Thus, we identified a total of seven LOX isozymes (I to VII) distributed among the main plant organs (roots, stems, leaves, and fruits). Furthermore, we studied the FA profile and the LOX isozyme pattern in pepper fruits including a sweet variety (Melchor) and three autochthonous Spanish varieties that have different pungency levels (Piquillo, Padrón, and Alegría riojana). It was observed that the number of LOX isozymes increased as the capsaicin content increased in the fruits. On the other hand, a total of eight CaLOX genes were identified in sweet pepper fruits, and their expression was differentially regulated during ripening and by the treatment with nitric oxide (NO) gas. Finally, a deeper analysis of the LOX IV isoenzyme activity in the presence of nitrosocysteine (CysNO, a NO donor) suggests a regulatory mechanism via S-nitrosation. In summary, our data indicate that the different LOX isozymes are differentially regulated by the capsaicin content, fruit ripening, and NO.


Assuntos
Capsicum , Capsicum/metabolismo , Frutas/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Óxido Nítrico/metabolismo , Capsaicina/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628468

RESUMO

H2S has acquired great attention in plant research because it has signaling functions under physiological and stress conditions. However, the direct detection of endogenous H2S and its potential emission is still a challenge in higher plants. In order to achieve a comparative analysis of the content of H2S among different plants with agronomical and nutritional interest including pepper fruits, broccoli, ginger, and different members of the genus Allium such as garlic, leek, Welsh and purple onion, the endogenous H2S and its emission was determined using an ion-selective microelectrode and a specific gas detector, respectively. The data show that endogenous H2S content range from pmol to µmol H2S · g-1 fresh weight whereas the H2S emission of fresh-cut vegetables was only detected in the different species of the genus Allium with a maximum of 9 ppm in garlic cloves. Additionally, the activity and isozymes of the L-cysteine desulfhydrase (LCD) were analyzed, which is one of the main enzymatic sources of H2S, where the different species of the genus Allium showed the highest activities. Using non-denaturing gel electrophoresis, the data indicated the presence of up to nine different LCD isozymes from one in ginger to four in onion, leek, and broccoli. In summary, the data indicate a correlation between higher LCD activity with the endogenous H2S content and its emission in the analyzed horticultural species. Furthermore, the high content of endogenous H2S in the Allium species supports the recognized benefits for human health, which are associated with its consumption.


Assuntos
Brassica , Alho , Sulfeto de Hidrogênio , Cebolas , Zingiber officinale , Brassica/química , Cistationina gama-Liase , Alho/química , Zingiber officinale/química , Sulfeto de Hidrogênio/análise , Isoenzimas , Cebolas/química
7.
Plant Cell Physiol ; 63(7): 889-900, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35323963

RESUMO

The thiol group of cysteine (Cys) residues, often present in the active center of the protein, is of particular importance to protein function, which is significantly determined by the redox state of a protein's environment. Our knowledge of different thiol-based oxidative posttranslational modifications (oxiPTMs), which compete for specific protein thiol groups, has increased over the last 10 years. The principal oxiPTMs include S-sulfenylation, S-glutathionylation, S-nitrosation, persulfidation, S-cyanylation and S-acylation. The role of each oxiPTM depends on the redox cellular state, which in turn depends on cellular homeostasis under either optimal or stressful conditions. Under such conditions, the metabolism of molecules such as glutathione, NADPH (reduced nicotinamide adenine dinucleotide phosphate), nitric oxide, hydrogen sulfide and hydrogen peroxide can be altered, exacerbated and, consequently, outside the cell's control. This review provides a broad overview of these oxiPTMs under physiological and unfavorable conditions, which can regulate the function of target proteins.


Assuntos
Proteínas de Plantas , Compostos de Sulfidrila , Glutationa/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Compostos de Sulfidrila/metabolismo
8.
Antioxidants (Basel) ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34829557

RESUMO

Protein persulfidation is a post-translational modification (PTM) mediated by hydrogen sulfide (H2S), which affects the thiol group of cysteine residues from target proteins and can have a positive, negative or zero impact on protein function. Due to advances in proteomic techniques, the number of potential protein targets identified in higher plants, which are affected by this PTM, has increased considerably. However, its precise impact on biological function needs to be evaluated at the experimental level in purified proteins in order to identify the specific cysteine(s) residue(s) affected. It also needs to be evaluated at the cellular redox level given the potential interactions among different oxidative post-translational modifications (oxiPTMs), such as S-nitrosation, glutathionylation, sulfenylation, S-cyanylation and S-acylation, which also affect thiol groups. This review aims to provide an updated and comprehensive overview of the important physiological role exerted by persulfidation in higher plants, which acts as a cellular mechanism of protein protection against irreversible oxidation.

9.
Nitric Oxide ; 81: 36-45, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30326260

RESUMO

Like nitric oxide (NO), hydrogen sulfide (H2S) has been recognized as a new gasotransmitter which plays an important role as a signaling molecule in many physiological processes in higher plants. Although fruit ripening is a complex process associated with the metabolism of reactive oxygen species (ROS) and nitrogen oxygen species (RNS), little is known about the potential involvement of endogenous H2S. Using sweet pepper (Capsicum annuum L.) as a model non-climacteric fruit during the green and red ripening stages, we studied endogenous H2S content and cytosolic l-cysteine desulfhydrase (L-DES) activity which increased by 14% and 28%, respectively, in red pepper fruits. NADPH is a redox compound and key cofactor required for cell growth, proliferation and detoxification. We studied the NADPH-regenerating enzyme, NADP-isocitrate dehydrogenase (NADP-ICDH), whose activity decreased by 34% during ripening. To gain a better understanding of its potential regulation by H2S, we obtained a 50-75% ammonium sulfate-enriched protein fraction containing the NADP-ICDH protein; with the aid of in vitro assays in the presence of H2S, we observed that 2 and 10 mM NaHS used as H2S donors resulted in a decrease of up to 36% and 45%, respectively, in NADP-ICDH activity, which was unaffected by reduced glutathione (GSH). On the other hand, peroxynitrite (ONOO-), S-nitrosocyteine (CysNO) and DETA-NONOate, with the last two acting as NO donors, also inhibited NADP-ICDH activity. In silico analysis of the tertiary structure of sweet pepper NADP-ICDH activity (UniProtKB ID A0A2G2Y555) suggests that residues Cys133 and Tyr450 are the most likely potential targets for S-nitrosation and nitration, respectively. Taken together, the data reveal that the increase in the H2S production capacity of red fruits is due to higher L-DES activity during non-climacteric pepper fruit ripening. In vitro assays appear to show that H2S inhibits NADP-ICDH activity, thus suggesting that this enzyme may be regulated by persulfidation, as well as by S-nitrosation and nitration. NO and H2S may therefore regulate NADPH production and consequently cellular redox status during pepper fruit ripening.


Assuntos
Capsicum/fisiologia , Sulfeto de Hidrogênio/metabolismo , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Óxido Nítrico/metabolismo , Frutas/efeitos dos fármacos , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Sulfeto de Hidrogênio/farmacologia , Isocitrato Desidrogenase/genética , Nitrosação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA